S-1200-12 Instructions

1. Connect the $\mathbf{1 2 0}$ volt power cord to the back of the power supply. Black to L, white to N and green to the ground terminal next to the L and N terminals.
2. Connect your positive power wire (usually red) to the large terminal on the front with POS above it. This is the 12 volt positive output.
3. Connect your negative power wire (usually black) to the large terminal on the front with NEG above it. This is the 12 volt negative output.
4. The voltage adjustment screw is just below the positive and negative 12 volt terminals just to the right.
5. Make sure the 115 / 230 switch is in the $\mathbf{1 1 5}$ position on the side of the power supply if you live in the USA. Some other countries use 230 volt for their wall currant and they should use the $\mathbf{2 3 0}$ setting. Don't worry about the green terminals for standard use. They are all set up and ready to go.

S-1200-12 100/80 Amp Power Supply Instructions

120 volt AC power cord connection: Black to terminal "L", White to terminal "N" Green to terminal "FG"

1. Case specs.

2. Power to heat ratio

3. Input voltage: $\mathbf{1 1 0}$ to $\mathbf{1 2 0}$ volts or 220 volts AC 47 to $\mathbf{6 3 H z}$
4. Removing the jumper from terminals VCI and VCO and replacing it with a 5 K potentiemeter will give you external control the output voltage.

The control of external DC voltage output
External volage(representative value)

ortat
5. Parallel hook up.

Parallel hook up with remote voltage compensation.
6. Remote Voltage Compensation.

When the load and power supply are far apart there is a voltage drop from the resistance in the length of the 12 volt power wires. This can be compensated for by hooking small wires from the VS+ and VS- terminals to the + and connections at the load. Set the power supply output voltage with no load then when a load is connected the output voltage will automatically adjust to compensate for the voltage drop caused by the length of the 12 volt wires.
7. Remote ON / OFF switch can be connected to INH and GND. An onen circuit is off. Shorted is on. Only turns off output not the whole power supply.

Turn on and shut down by switch

Turn on and shut down by transistor
8. Input voltage: $\mathbf{1 1 0}$ to $\mathbf{1 2 0}$ volts or 220 volts $\mathbf{A C ~} \mathbf{4 7}$ to $\mathbf{6 3 H z}$

Output Voltage: 9 to 14.5 VDC Adjustable
Output Amperage: $\mathbf{8 0}$ Amps Continuous 100 Amps Momentary Peak Output Efficiency: 87\%
Ripple \& Noise: 50mVp-p
Setup, Rise, Hold Time: $\mathbf{8 0 0} \mathrm{ms}, 50 \mathrm{~ms}, 16 \mathrm{~ms}$ at full load
Over Load: Current limiting, delay shut down o/p voltage, re-power on to recover
Safety Standard: Design refer to UL1950,CSA22.2,IEC60950
EMC Standard: Design refer to FCC Part 15 Class A
Weight: 10 lbs.
Size: 12in long X 5 1/4in wide 2 5/8in tall

